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ABSTRACT

We present a framework for the hierarchical identification and characterization of voids based
on the Watershed Void Finder. The Hierarchical Void Finder is based on a generalization of
the scale space of a density field invoked in order to trace the hierarchical nature and structure
of cosmological voids. At each level of the hierarchy, the watershed transform is used to
identify the voids at that particular scale. By identifying the overlapping regions between
watershed basins in adjacent levels, the hierarchical void tree is constructed. Applications on
a hierarchical Voronoi model and on a set of cosmological simulations illustrate its potential.

Key words: methods: N-body simulations — methods: data analysis — techniques: image
processing — large-scale structure of Universe.

1 INTRODUCTION

The large-scale distribution of matter observed in galaxy surveys
and N-body computer simulations features a complex system of
cell-like empty regions defined by a dense network of clusters,
filaments and walls (Kirshner et al. 1981; Colless et al. 2003; Gott
et al. 2005; Huchra et al. 2005). The Cosmic Web is the result of the
tidally induced anisotropic nature of the gravitational collapse of
density perturbations (Bond, Kofman & Pogosyan 1996; Zel’dovich
1970).

Within this context, voids are the low density depressions from
which matter is continuously draining (Icke 1984). Forming a key
component of the Cosmic Web, voids emerge out of the density
troughs in the primordial Gaussian field of density fluctuations (see
van de Weygaert & Platen 2009, for a recent review). As a result
of their underdensity, voids represent a region of weaker gravity,
resulting in an effective repulsive peculiar gravitational influence.
Initially underdense regions expand faster than the Hubble flow and
while they expand, matter is squeezed in between them, resulting
in void boundaries consisting of sheets and filaments.

1.1 A hierarchy of voids

In addition to its anisotropic nature, the Cosmic Web is also charac-
terized by an evident hierarchical structure. As a result of the multi-
scale nature of the primordial perturbations, structure builds up via
small-scale objects into ever-larger structures. High-resolution N-
body experiments (Springel 2005) display a complex and tenuous
network of substructures within the interior of voids, resembling
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the prominent Cosmic Web delineated by large haloes. The relation
between different levels in the hierarchy of the Cosmic Web can be
defined by the voids as, at any given level of the hierarchy, they are
the cells within which we observe the web-like infrastructure at the
next level.

Because of their relatively simple structure and evolution, we
may better understand the gradual hierarchical buildup of the Cos-
mic Web on the basis of its void population. Two processes dictate
the evolution of voids: their merging into ever-larger voids as well
as the collapse and disappearance of small ones embedded in over-
dense regions. When adjacent voids meet up and merge, the matter
in between is squeezed in thin walls and filaments, which subse-
quently drain towards the outer boundary of the voids (Dubinski
et al. 1993). By identifying and assigning critical density values to
the two evolutionary void processes of merging and collapse, Sheth
& van de Weygaert (2004) managed to describe this hierarchical
evolution of the void population in terms of a two-barrier excursion
set formulation (Bond et al. 1991). The context of this unfolding
void hierarchy within the Cosmic Web can be clearly understood
within the Lagrangian adhesion description (Sahni, Sathyaprakash
& Shandarin 1994).

1.2 Reconstructing the hierarchy of voids

In this study, we describe our formalism for explicitly analysing the
hierarchy of voids in the cosmic matter or galaxy distribution. Based
on the watershed transform (see e.g. Beucher 1982; Platen, van de
Weygaert & Jones 2007), it combines the Watershed Void Finder
(WVF) with a formalism to establish the hierarchical structure and
relationship of the detected voids.

The grid-based WVF method introduced by Platen et al. (2007)
is able to detect voids without restriction on their size and shape. A
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related Voronoi tessellation-based implementation is the ZOBOV
void finder (Neyrinck 2008). Both methods are based on the idea
following the slope lines connecting a given point in space to the
local minima of the valley containing that point. More details on
the performance of a variety of other void finders can be found in
Colberg et al. (2008) (also see Lavaux & Wandelt 2010).

In Section 2, we describe the basis of the hierarchical void tree
formalism. The details of the technique are outlined in Section 3.
We then present an illustrative test of its performance on a heuristic
hierarchical Voronoi model in Section 4. Its cosmological potential
is outlined in Section 5, followed by a short discussion in Section 6.

2 THE HIERARCHICAL VOID TREE

In the void hierarchy framework, we identify voids independently
at all levels of the hierarchical space and establish the cross-scale
relations between voids at different levels. For establishing the mul-
tiscale and nesting properties of the void network, we follow the
natural path of multiscale techniques (Aragén-Calvo et al. 2007).
Within this context, we evaluate the structure of a scalar field in
N dimensions in an (N + 1)-dimensional hierarchical space of the
original field where the extra dimension represents a scale usually
defined by a smoothing function (lijima 1962; Witkin 1983).

Subsequently, voids between adjacent levels in the hierarchy are
linked as a function of well-defined characteristics. A given parent
void at the hierarchy level i is defined by smaller children voids at
the next level i +1 in the hierarchy. We assign parent—child relations
between voids in adjacent levels of the hierarchy by identifying over-
lapping volumes between the voids. A given child usually shares
volume with several parent voids higher in the hierarchy. We en-
force a non-loop property in the hierarchical tree by assigning each
child void exclusively to the one parent void to which the child con-
tributes most of its volume. This constraint assures that all children
voids have only one single parent in the void tree hierarchy.

3 RECONSTRUCTING THE VOID HIERARCHY

Having established the general scheme for the void hierarchy tree,
we need to detail its key ingredients. The first issue is that of the
definition of the scale space from which we extract the void hier-
archy. The most essential element is the void identification at each
level, which is based on the watershed segmentation of the scalar
density — or related — fields.

3.1 Scale and hierarchical spaces

Proper scale spaces must have the following set of properties:
(1) linearity, (2) spatial shift invariance, (3) isotropy and (4) causal-
ity. The Gaussian filter addresses each of these constraints (Florack
1993). However, while the Gaussian function is an optimal scale-
space operator, it is not necessarily the only — or the best-suited —
option for the study of the hierarchical character of the Cosmic Web.

The spatial filtering approach assumes that the levels of the hier-
archy are defined purely and only on the basis of their corresponding
spatial scale. However, it would be better if our definition of a char-
acteristic hierarchy level was based on the nature of the complex
physical processes that give rise to the dark matter and galaxy dis-
tribution. Intrinsic hierarchical properties of the Cosmic Web such
as halo mass functions, galaxy luminosities, galaxy morphology,
etc., are suggestive examples. In the following, the term Hierar-
chical Spaces is used to indicate a broader class of spaces defined
by one or more specific properties which are manifestations of the

hierarchical nature of the Cosmic Web. This means that they do not
necessarily satisfy the requirements of a proper scale space.

In the case of N-body simulations, we have access to the full
evolution of the Cosmic Web. This allows us to control the relation
between scales in the primordial density field. By using the infor-
mation from the power spectrum, we can select those scales in the
initial conditions which will grow and evolve faster or, alternatively,
those that will not evolve at all. The most straightforward example
would be the definition of a linear-regime smoothing procedure that
will allow large-scale linear fluctuations to grow while small-scale
linear fluctuations will be suppressed. This filter will act on the
linear-regime matter distribution where all Fourier modes are in-
dependent and grow independently, and allow us to target specific
hierarchy levels for further evolution towards collapse, ultimately
producing the present-time structures. This low-pass filtered density
field will evolve into a universe with all the large-scale structures
in place, with their shapes moulded by anisotropic gravitational
collapse, but lacking the small-scale details.

This approach is fundamentally different from the usual a pos-
teriori smoothing operation in that it avoids the non-linear effects
resulting from cross-talk between Fourier modes. It has the advan-
tage of transparently exposing the hierarchy of structures imprinted
in the initial density field.

3.2 Watershed segmentation

The watershed transform segments an image into regions follow-
ing its intrinsic substructure (see Platen et al. 2007, for a detailed
description of the method). The word watershed finds its origin in
the analogy of the procedure with that of a landscape being flooded
by a rising level of water: as the water level rises, the watershed
basins around the minima will ultimately meet at the ridges defined
by saddle points and maxima in the density field. The final result of
the completely immersed landscape is a division of the landscape
into individual cells, separated by ridge dams. The cosmological
analogy with the landscape is suggestive: the basins represent the
underdense void regions, while their boundaries of sheets and ridges
form the network of walls, filaments and clusters that defines the
Cosmic Web (Aragdén-Calvo et al. 2008).

3.2.1 Oversegmentation

One of the practical complications of watershed segmentation is its
sensitivity to any structure, whether it is real or an artefact. As a
result, it easily partitions a given region into several smaller sub-
regions. This ‘oversegmentation’ is commonly assumed to be the
result of ‘noisy’ structures superimposed on top of the more promi-
nent — and usually ‘real’ — features. In reality, the oversegmentation
is set not only by the noise level of the image, but also by the
presence of intrinsic and significant substructure in the field.

The limitations of the watershed transform due to oversegmen-
tation can be alleviated by the use of hierarchical techniques such
as the hierarchical watershed (Olsen 1996, 1997; Gauch 1999). In
this approach, the watershed transform is computed on the image
after smoothing at several scales or thresholding at several intensity
levels. The large-scale images will delineate large regions while
smoothing their boundaries. The small-scale images will reveal the
small features in the image, as well as the noisy structures, while
keeping the original boundaries. In a final step, the scale images
are merged following a specific prescription. Often this involves the
merging of small regions contained within a common parent region.
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In most watershed-based hierarchical reconstruction schemes,
the small-scale images in the hierarchy are merely considered as an
intermediate step in the reconstruction of the features of interest.
The oversegmentation is considered an undesirable effect due to the
noise in the image. Here we will use a different approach. Assuming
that we may ignore the noise-induced oversegmentation (see Platen
et al. 2007), we focus exclusively on the oversegmentation due to
intrinsic structures. Instead of using only the largest scale of the
hierarchy, we will therefore consider all scales simultaneously.

3.2.2 Hierarchical watershed

We perform the void merging across adjacent levels in the hierar-
chy by computing only the flooding procedure on the watershed,
i.e. without identifying the watershed boundaries. This procedure
segments the density field into watershed basins but does not ex-
plicitly provide the boundaries between adjacent watershed regions.
This ‘incomplete watershed’ focuses only on the space partitioning
aspect of the watershed transform. This makes it straightforward
to merge voxels between children voids on the basis of this incom-
plete watershed. This leads directly to the complete hierarchical void
tree. After the merging procedure for completeness, we compute the
full watershed transform (i.e. watershed basins and boundaries) by
performing a local flooding watershed transform restricted to the
boundary voxels as described in Aragén-Calvo et al. (2008).

Once the void hierarchy is stored in a tree structure it is straight-
forward to define functions to transverse the tree and extract useful
information of the properties of the voids, their connectivity and
their hierarchical relations.

4 TEST: HIERARCHICAL VORONOI MODELS

We tested our method with a hierarchical implementation of a
Voronoi clustering model of the Cosmic Web (van de Weygaert
& Icke 1989; Okabe et al. 2000). This model shares similar spatial
and hierarchical properties as the observed distribution of matter
while making it possible to objectively compare the recovered void
hierarchy with the original one. Hierarchical Voronoi models used
have the two main properties we seek to study: (1) a clear multiscale
nature and (2) a hierarchy of nested structures.

4.1 Implementation

The hierarchical Voronoi model is constructed as follows: the top
level of the void hierarchy is generated from a set of sparsely sam-
pled points which define a periodic Voronoi tessellation. Inside each
Voronoi cell, we define a new set of points and compute the Voronoi
tessellation /ocally on the points inside the cell. This local Voronoi
cell is non-periodic and has its parent Voronoi edges as boundaries.
This procedure can be repeated iteratively until the desired number
of nested levels in the hierarchy is reached. We regularize the size
and shape of the Voronoi cells by performing a Voronoi centroid
regularization on the seed points. By coupling the scalar and hi-
erarchical aspects of the image, we can study it via the canonical
Gaussian scale space.

4.2 The Voronoi test

From the hierarchical Voronoi model, we compute the normal-
ized distance field for each point in a regular grid (see Aragén-
Calvo et al. 2008). This field is defined as the ratio of the distance
to the closest and second closest Voronoi seeds. It yields a dis-
tance field with values of 1 at the cell boundaries and decreasing
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towards the centre of the cell. We do this for each level in the hi-
erarchy. Finally, all levels are integrated into a single distance field
I(x) = .1 o[Z'(x)/(i +1)*], where n is the number of levels in the
hierarchy. This scale integration scheme is similar to the one used
in other synthetic image generation algorithms such as Perlin noise
(Perlin 1985). By tuning the denominator of the above equation,
it is possible to define different intensity scaling relations between
levels in the hierarchy. In our case, the most prominent features in
the image will be the largest voids.

Next, we construct the Gaussian scale space of the image and
identify voids at each scale independently. Since our image was
constructed with two characteristic scales, it makes no sense to use
more than two smoothing scales. The scale space then consists of
two scales: one with no smoothing and one with a width between
the size of the small and large Voronoi cells.

The hierarchical merging of voids is illustrated in Fig. 1. The top
and bottom left-hand panels show the original field and its smoothed
version, respectively. The centre panels show the corresponding wa-
tershed transform. Note that the smoothed field produces a distorted
watershed transform. Both the general shape and the boundaries of
the voids are affected by the smoothing procedure. On the other
hand, the watershed transform of the original field reproduces the
original boundaries between voids but it does not differentiate be-
tween levels in the hierarchy. The hierarchical merging of voids
is shown in the top right-hand panel. One individual void is high-
lighted in order to illustrate the void merging procedure. The parent
void’s area overlaps with several children, and one can see that the
children that are mostly covered by the parent void are the ones orig-
inally inside it. The final result of the merging procedure is shown in
the bottom right-hand panel where we emphasize the large voids in
the top level of the hierarchy (thick lines) containing smaller voids
at the bottom of the hierarchy (thin lines).

The hierarchical reconstruction of the voids has two important
advantages over the single-scale WVF: (1) it is not affected by
smoothing procedures and (2) it explicitly gives the inner substruc-
ture of the voids. The reconstructed hierarchical voids contain both
their original shape and their original level of substructure.

5 COSMOLOGICAL APPLICATION

We applied our algorithm to three cosmological simulations that are
variants of the cold dark matter scenario. The simulations cover the
three possible geometries of the universe: flat, open and closed, with
a cosmological parameter of (2, 2,) = (0.3, 0.7) for the flat A
cold dark matter (ACDM) model, (0.1, 0.7) for the open ACDM and
(0.5, 07) for the closed ACDM universe. Each simulation consists
of 2563 dark matter particles in a 200 ~~! Mpc box. All simulations
share the same Hubble parameter, 7 = 0.7 and o3 = 0.8 (see
Araya-Melo 2008, for a detailed description).

We perform the linear-regime smoothing procedure by generat-
ing lower resolution versions of 1283 and 64> particles from the
same initial conditions. The 643 resolution corresponds to a cut-off
scale of ~3 h~! Mpc, enough to trace voids without significant sub-
structure. We followed the evolution of the box from z = 49 until
the present time z = 0 using the GADGET-2 N-body code (Springel
2005). From the final particle distribution, we compute the density
field inside a cubic grid of 512 voxels per dimension using a recent
implementation of the DTFE method (Schaap & van de Weygaert
2000; van de Weygaert & Schaap 2009).

The size distribution of voids in different cosmologies and levels
of the hierarchy are shown in Fig. 2. The mean void sizes of voids
in all cosmologies are 11, 13 and 18 Mpc A~! for levels 0, 1 and 2,
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Distance field

scale 0
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Figure 1. Hierarchical reconstruction of voids in a hierarchical Voronoi model. The original distance field is shown in the top left-hand panel (scale 0) and
its smoothed version (scale 1) in the bottom left-hand panel. The centre panels show their corresponding watershed transform. An individual void is depicted
at the largest scale in the bottom centre panel. The hierarchical merging of the void with its children subvoids is shown in the top right-hand panel. The final
hierarchical reconstruction is shown in the bottom right-hand panel. The original shape of the large voids is reconstructed as well as their inner hierarchy of

substructures.
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Figure 2. Distribution of void sizes for three cosmologies: SCDM (solid) ACDM (dashed) and OCDM (dotted) computed at three different levels of the
hierarchy going from the (left) bottom of the hierarchy (smallest scale) to (right) the top of the hierarchy.

respectively. While the voids at the top of the hierarchy (level 2) are
clearly the largest, the mean size and distribution of voids in levels
0 and 1 are very similar. All distributions in the three cosmologies
have similar peaks at a given level in the hierarchy. However, there
are differences in the overall shape of the distributions. Compared
to the LCDM and SCDM, the OCDM universe has a higher tail
towards large voids. The fact that the order OCDM-LCDM-SCDM

is observed in all the distributions gives us a good indication of the
ability of our method to discriminate between cosmologies.

6 CONCLUSION AND FUTURE WORK

We introduced a framework for the identification of voids and their
hierarchical properties. The hierarchical nature of the void network
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makes our method a powerful tool for its description and character-
ization. The Hierarchical Void Finder shares the advantages of the
WVE, while addressing some of its limitations such as the overseg-
mentation and the reconstruction of the void boundaries after strong
smoothing of the density field.

In order to test our method, we introduced a hierarchical im-
plementation of Voronoi models. These heuristic models share the
multiscale, hierarchical and topological properties of the Cosmic
Web. As such, the hierarchical Voronoi models represent a valuable
tool for testing algorithms for LSS analysis.

We extend the idea of scale space in order to account for non-
linearities and physical processes. We discuss a Gaussian smoothing
in the initial conditions. By applying a Gaussian smoothing in the
linear regime before there is cross-talk between Fourier modes, we
are able to cleanly expose the hierarchy of structures in the evolved
non-linear matter distribution.

In a following paper, we will describe the basis of the hierarchical
space and explore in more detail the properties of the void network
and its potential for constraining cosmological parameters.
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